
HYDROGASDYNAMICS IN TECHNOLOGICAL PROCESSES

SELF-SIMILAR SOLUTION OF THE PROBLEM OF A STRONG
EXPLOSION IN A PERFECT GAS. LAGRANGIAN DESCRIPTION
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The problem of a strong one-dimensional explosion in a perfect gas has been considered. The analytical so-
lution of self-similar equations describing the dynamics of the explosion and the propagation of a strong
shock wave has been obtained in Lagrangian mass coordinates.

Introduction. Investigation of the propagation of strong shock waves generated by an explosion is a classical
gas-dynamics problem at present. Strong-explosion theory derives from the necessity of describing the processes of
motion of a continuum and a shock wave in the explosion of a charge of high specific energy and small weight and
volume. This theory was developed in the works of L. I. Sedov, J. von Neumann, G. Taylor, and K. P. Stanyukovich
[1–7]. Different aspects of strong-explosion theory were the focus of numerous works reviewed in [8]. The analytical
solution of the corresponding self-similar equations in Eulerian coordinates was given in [1–2].

At the same time, it is common knowledge that one-dimensional nonstationary flows of the explosion type,
particularly, numerical solution of the corresponding gas-dynamics equations, are conveniently investigated in La-
grangian variables. This approach enables one to naturally describe contact discontinuities. In this case it is much more
simple to consider the chemical reactions and the kinetics of ionization and recombination processes in high-tempera-
ture explosion products and in the ambient medium [9, 10]. Radiative transfer can also be successfully analyzed in
such an approach [11]. The present work gives the solution of the problem of a strong explosion in a perfect gas in
Lagrangian mass coordinates.

Formulation of the Problem. We consider a one-dimensional strong explosion in a medium with a constant
density ρ0. The gas motion is known to be described by the following equations:
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Equations (1) express the laws of conservation of mass and momentum, whereas Eq. (2) expresses the law of conser-
vation of energy. In them, ν is the symmetry factor (1, 2, and 3 respectively for plane, cylindrical, and spherical
cases). If we disregard mechanisms of energy transfer other than a hydrodynamic mechanism, the relation
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expressing the constancy of the entropy of a gas particle holds true behind the shock-wave front. The specific internal
energy ε is determined by the gas equation with a constant adiabatic exponent γ
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ε = 
p ⁄ ρ
γ − 1

 . (4)

In the case of a strong explosion the gas pressure in an unperturbed region can be disregarded compared to
the pressure behind the shock-wave front (p0 = 0). If the energy release is considered to be instantaneous and the mass
of the explosion charge is assumed to be zero, the motion will be dependent on just two parameters: energy E (explo-
sion energy per unit area in a plane case and per unit length for cylindrical symmetry and the total energy for spheri-
cal geometry) and ρ0. Their dimensions are J/m(3−ν) (for E) and kg/m3 (for ρ0). Therefore, the only dimensionless
combination that can be composed of the quantities r and t and the parameters E and ρ0 is
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r
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 .
(5)

The proportionality factor α is found from the law of conservation of energy. The external boundary of the region in-
volved in motion is the shock-wave front on which the relations for a strong discontinuity hold [1]:
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The wave velocity D is related to the coordinate of the front by the relation
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In the plane (on the axis or at the center) of symmetry, the mass velocity, apparently, vanishes:

r = 0 :   u = 0 . (8)

Lagrangian Equations of Strong Explosion. Below, we consider the solution of this problem in Lagrangian
variables. We introduce the mass coordinate according to the relation

dm = σν ρr
ν−1

dr , (9)

where σν = 2, 2π, and 4π for ν = 1, 2, and 3 respectively. If m is reckoned off from the plane (axis or center) of
symmetry, the mass coordinate of a point with an Eulerian coordinate r is the mass of the gas in the domain [0, r].
In mass coordinates, gas-dynamics equations have the form
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In (10) and (11), by the symbol ∂ ⁄ ∂t we mean the substantial time derivative ∂ ⁄ ∂t + u∂ ⁄ ∂r. We introduce the mass
coordinate of the shock-wave front. Since the wave moves in the medium with a constant density, in accordance with
(5) and (9) we have
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Here the coefficient β is related to the factor α from (5) by the relation β = αν.
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Since the pressure (and energy) of the gas ahead of the shock-wave front can be disregarded in the strong-ex-
plosion approximation, the law of conservation of total energy in the region of motion yields
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The self-similar dimensionless mass coordinate is determined as
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Functions describing gasdynamic flow can be represented in the form
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Introducing the specific volume v = ρ−1 = ρ0
−1(γ − 1)/(γ + 1)V(ξ) which is the reciprocal of density and substituting (15)

into (10) and (11), we obtain a system of differential equations for the dimensionless representative functions V, U, P,
and η:
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Boundary conditions for the self-similar functions, according to (6), (8), and (15), have the form

ξ = 0 :   U = 0 ;   ξ = 1 :   η = 1 ,   U = 1 ,   P = 1 ,   V = 1 . (18)

Analysis and Solution. Relations (17) and (18) yield two algebraic equations expressing the laws of conser-
vation of energy and the constancy of the entropy of a gas particle behind the shock-wave front:

ξ (PV + U
 2) = 2ην−1

PU ,   ξPV
γ
 = 1 . (19)

Thus, the problem is reduced to determination of the solution of Eqs. (16) and (19), satisfying conditions (18).
To analyze the given system we introduce the dimensionless temperature Z:

Z = PV . (20)

Using it and relations (19) we eliminate the variables V, P, and η from (16):
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We note that in the case of plane symmetry (ν = 1) where the last equation of (21) does not contain an Eulerian co-
ordinate, the quantity η, according to (16), is related to U and V by the dependence
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Finally Eqs. (16) are reduced to a system of two differential equations
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the coefficients on the right-hand side of which are expressed as follows:
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Further analysis is standard. Dividing the second equation from (23) by the first equation, we obtain

dZ
dU

 = 
ν (Z + U

 2)2 + (γ − 1) Z (Z − U
 2) 


Z

 2
 + (2 − γ) ZU

 2
 − 2 (γ − 1)2 Z

 2
U

 2
 (Z + U

 2)

− γ (γ − 1) ZU (Z + U
 2)2 − ν (γ − 1) U 3

 Z
 2

 + (2 − γ) ZU
 2


 . (25)

To simplify this equation we introduce a new variable y:

Z = U
 2
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Substituting (26) into (25) and carrying out transformations, we write the following equation:
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Despite its complex form, Eq. (27) is solved quite easily, since the polynomial in the denominator is factored. As a
result we have
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The solution of the last equation, which satisfies the condition on the shock-wave front (U = 1 for y = 1), has the
form
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Thereafter, from (26), we immediately determine the dependence Z(y):
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Expressions (30) and (31) represent the parametric solutions of the Lagrangian strong-explosion equations for mass ve-
locity and temperature. Now we direct our attention to solution of the first equation of system (23). Since we have
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, we find the differential equation relating y and ξ:
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The solution of this equation is fundamentally different for the adiabatic exponents γ ≠ 2 and γ = 2, which is due to
the appearance of a multiple root in the polynomial in the denominator of (32) in the latter case. The solution has the
form
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Knowing Z(y) and ξ(y), from the first equation of (21), we can determine the profile of the specific volume
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The distribution of the dimensionless pressure is found from expression (20):
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To determine the coordinate η we must use the third relation from (21) in the case ν ≠ 1 and formula (22) in the case
of a plane explosion. Finally we obtain the following dependence (true for any ν) for the dimensionless Eulerian co-
ordinate:
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Relations (30), (31), and (33)–(36) completely determine the parametric solution of self-similar strong-explosion equa-
tions. The constant β appearing in (12) is found from the law of conservation of energy (13):
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Discussion of the Results. The results of calculation of the dimensionless parameter β as a function of γ for
different ν values are presented in Fig. 1. This quantity can roughly be evaluated, if it is assumed that the entire mass
of the gas involved in motion has the parameters corresponding to the shock-wave front. Then we have P = V = U =
1 and

β = 
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16σν

(γ + 1)2 ν (ν + 2)2
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− 
ν
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 . (38)

Analyzing expressions (33)–(35), we should note that, despite the apparent difference in the behavior of the
solution for γ ≠ 2 and γ = 2, its dependence on the quantity γ is continuous. This is yielded by the above formulas
(33)–(35): if we carry out the expansion γ = 2 + δ in the first of them and pass to the limit δ → 0, we obtain the sec-
ond corresponding expressions.

The velocity U and the Eulerian coordinate η must vanish when ξ = 0. According to (30), (33), and (36), this
condition corresponds to the values of the parameter y → ∞. Thus, the gasdynamic profiles in the region of motion are
described with variation in y in the interval [1, ∞]. The asymptotic behavior of the solution near the epicenter of the
explosion (small ξ) has the form

U D ξ
γ−1
νγ  ,   Z D ξ

− 1
γ  ,   V D ξ

− 1
γ ,   P D ξ0

 ,   η D ξ
γ−1

νγ  . (39)

The characteristics of flow in strong explosion as functions of the self-similar variable ξ for a spherical explosion are
shown in Fig. 2.

We note that a singularity in the solution occurs for ν = 3 and the adiabatic exponent γ ≥ 7. Indeed, if
γ → 7, the expressions in the last brackets in (30), (31), and (33)–(36) are equal to (7 − γ)/[15(γ − 1)], whence it fol-
lows that y takes on the unique value y = 1. The distribution of the parameters of flow along the Lagrangian mass
coordinate in this case is described by the simplest relations

Fig. 1. Dimensionless parameter β vs. symmetry factor ν and adiabatic expo-
nent γ: 1, 2, and 3) for ν = 1, 2, and 3 respectively. Solid curves, calculation
according to (37), dashed curves, rough estimate (38).

94



U = ξ1 ⁄ 4 ,   Z = ξ1 ⁄ 2 ,   V = ξ−1 ⁄ 4 ,   P = ξ3 ⁄ 4 ,   η = ξ1 ⁄ 4 , (40)

which yield the Eulerian profile U = η, Z = η2, V = η−1, P = η3, and ξ = η4. If γ > 7, the parameter y varies in the
interval 0 ≤ y ≤ 1 and the gasdynamic profiles in this case have the following asymptotics for ξ → 0:

U = U0 + U1ξ
 (γ−2) ⁄ γ ,   Z = ξ (γ−2) ⁄ γ ,   V = ξ −2 ⁄ γ ,   P = ξ ,   η = η0 + η1ξ

 (γ−2) ⁄ γ . (41)

Here U0, U1, η0, and η1 are constants easily found from (30) and (36). From expression (41) it is seen that a vacuum
cavity appears at the center of a spherical explosion in the case γ > 7.

Conclusions. Strong-explosion theory has a very wide range of application [7, 8, 12], describing explosion
phenomena of a different physical nature and different scale. The self-similar solution of the problem of a strong ex-
plosion, being the intermediate asymptotics, describes the stage of actual explosion processes where the mass of the
moving gas is much larger than the mass of explosion products, and the pressure on the shock-wave front is much
higher than the ambient pressure.

NOTATION

D, velocity of the shock-wave front, m/sec; E, explosion energy, J/m(3−ν); G, P, U, V, and Z, dimensionless
representative functions of density, pressure, velocity, specific volume, and temperature; m, Lagrangian mass coordi-
nate, kg/m(3−ν); p, pressure, Pa; r, Eulerian spatial coordinate, m; t, time, sec; u, mass velocity, m/sec; v, specific vol-
ume, m3/kg; y, dimensionless variable determining the solution; α and β, dimensionless coefficients determining the
law of propagation of the shock-wave front in spatial and mass coordinates respectively; γ, adiabatic exponent of the
gas; ε, specific internal energy, J/kg; η, self-similar spatial coordinate; ν, parameter of symmetry of the problem; ξ,

Fig. 2. Self-similar profiles of mass velocity, pressure, density, and radial com-
ponent for a spherical explosion for different values of the adiabatic exponent:
1) γ = 1.1; 2) 1.2; 3) 7/5; 4) 5/3; 5) 2; 6) 3; 7) 7. 
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self-similar Lagrangian variable; ρ, density, kg/m3; σν, symmetry factor relating the spatial and mass coordinates. Sub-
scripts: f, parameters of the gas on the shock-wave front; 0, initial parameters of the gas.
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